About Lead


Lead has been commonly used for thousands of years because it is widespread, easy to extract and easy to work with. It is highly malleable and ductile as well as easy to smelt. Metallic lead beads dating back to 6400 BC have been found in Çatalhöyük in modern-day Turkey. In the early Bronze Age, lead was used with antimony and arsenic. Lead is mentioned in the Book of Exodus


Lead’s symbol is Pb (Latin: plumbum) and atomic number is 82. Lead is a soft and malleable metal. It is also counted as one of the heavy metals. Metallic lead has a bluish-white color after being freshly cut, but it soon tarnishes to a dull grayish color when exposed to air. Lead has a shiny chrome-silver luster when it is melted into a liquid.
Lead is used in building construction, lead-acid batteries, bullets and shots, weights, as part of solders, pewters, fusible alloys and as a radiation shield. Lead has the highest atomic number of all of the stable elements.


Lead is bright and silvery when freshly cut but the surface rapidly tarnishes in air to produce the commonly observed dull luster normally associated with lead. It is a dense, ductile, very soft, highly malleable, bluish-white metal that has poor electrical conductivity when compared to most other metals. This metal is highly resistant to corrosion, and because of this property, it is used to contain corrosive liquids (for example, sulfuric acid). Because lead is very malleable and resistant to corrosion it is extensively used in building construction – for example in the external coverings of roofing joints.
Metallic lead can be toughened by addition of small amounts of antimony, or of a small number of other metals such as calcium. All isotopes of lead, except for lead-204, can be found in the end products of the radioactive decay of the even heavier elements, uranium and thorium.